Nanofluidic channels of arbitrary shapes fabricated by tip-based nanofabrication.

نویسندگان

  • Huan Hu
  • Yue Zhuo
  • Muhammed E Oruc
  • Brian T Cunningham
  • William P King
چکیده

Nanofluidic channels have promising applications in biomolecule manipulation and sensing. While several different methods of fabrication have been demonstrated for nanofluidic channels, a rapid, low-cost fabrication method that can fabricate arbitrary shapes of nanofluidic channels is still in demand. Here, we report a tip-based nanofabrication (TBN) method for fabricating nanofluidic channels using a heated atomic force microscopy (AFM) tip. The heated AFM tip deposits polymer nanowires where needed to serve as etch mask to fabricate silicon molds through one step of etching. PDMS nanofluidic channels are easily fabricated through replicate molding using the silicon molds. Various shapes of nanofluidic channels with either straight or curvilinear features are demonstrated. The width of the nanofluidic channels is 500 nm, and is determined by the deposited polymer nanowire width. The height of the channel is 400 nm determined by the silicon etching time. Ion conductance measurement on one single curvy shaped nanofluidic channel exhibits the typical ion conductance saturation phenomenon as the ion concentration decreases. Moreover, fluorescence imaging of fluid flowing through a fabricated nanofluidic channel demonstrates the channel integrity. This TBN process is seamlessly compatible with existing nanofabrication processes and can be used to achieve new types of nanofluidic devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tip-Based Nanofabrication of Arbitrary Shapes of Graphene Nanoribbons for Device Applications.

Graphene nanoribbons (GNRs) have promising applications in future nanoelectronics, chemical sensing and electrical interconnects. Although there are quite a few GNR nanofabrication methods reported, a rapid and low-cost fabrication method that is capable of fabricating arbitrary shapes of GNRs with good-quality is still in demand for using GNRs for device applications. In this paper, we present...

متن کامل

Single sub-20 nm wide, centimeter-long nanofluidic channel fabricated by novel nanoimprint mold fabrication and direct imprinting.

We report and demonstrate a new method to fabricate single fluidic-channels of uniform channel width (11-50 nm) and over 1.5 cm in length, which are essential to developing innovative bio/chemical sensors but have not been fabricated previously. The method uses unconventional nanofabrication (a combination of crystallographic anisotropic etching, conformal coating, and edge patterning, etc.) to...

متن کامل

Single Particle Nanoplasmonic Sensing in Individual Nanofluidic Channels

Nanoplasmonics allows label-free optical sensing and spectroscopy at the single nanoparticle level by exploiting plasmonic excitations in metal nanoparticles. Nanofluidics offers exclusive possibilities for applying and controlling fluid flow and mass transport at the nanoscale and toward nanosized objects. Here, we combine these two concepts in a single device, by integrating single particle n...

متن کامل

Low power femtosecond tip‐based nanofabrication with advanced control

In this paper, we propose an approach to enable the use of low power femtosecond laser in tip-based nanofabrication (TBN) without thermal damage. One major challenge in laser-assisted TBN is in maintaining precision control of the tip–surface positioning throughout the fabrication process. An advanced iterative learning control technique is exploited to overcome this challenge in achieving high...

متن کامل

Continuous high throughput nanofluidic separation through tangential-flow vertical nanoslit arrays.

Nanofluidic devices exhibit unique, tunable transport properties that may lead to breakthroughs in molecular separations and sensing. However, the throughput of these devices is orders of magnitude too small for the processing of macroscopic samples. Here we overcome this problem by combining two technological innovations. First, nanofluidic channels are made as vertical slits connecting the tw...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanotechnology

دوره 25 45  شماره 

صفحات  -

تاریخ انتشار 2014